
IARJSET  ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

      International Advanced Research Journal in Science, Engineering and Technology 
ISO 3297:2007 Certified 

Vol. 4, Issue 12, December 2017 

 

Copyright to IARJSET                                             DOI  10.17148/IARJSET.2017.41209                                                   1 

Modification on Adomian Decomposition 

Method for Solving Fractional Riccati 

Differential Equation 

 

Hassan N.A. Ismail
1
, I.K. Youssef

2
, Tamer M. Rageh

3
 

Department of Basic Science Engineering, Faculty of Engineering in Benha, Benha University, Benha 13512, Egypt
1,3

 

Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
2
 

 

Abstract: In this paper we introduced a new approach to solve fractional order Riccati differential equation that called 

Adomian Decomposition Method- Restrictive Padé (ADM-RP) which is anew fast and efficient method that 

approximate the series solution given by ADM to a fraction function called Restrictive Padé approximation  using 

mathematica package the solution by ADM-RP gives better solution. 
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I. INTRODUCTION 

The following non-linear fractional order Riccati differential equation 

𝐷∗
𝛼  𝑦 𝑡 = 𝐴 𝑡 + 𝐵 𝑡 𝑦 + 𝐶 𝑡 𝑦2      𝑡 > 0,  

 𝑛 − 1 ≤ 𝛼 ≤ 𝑛 
(1) 

Subject to the initial conditions  

𝑦 k  0 = 𝑐𝑘       𝑘 = 0,1, … , 𝑛 − 1 (2) 

where α is the fractional order derivative and  𝑛 is an integer. 𝐴 𝑡 , 𝐵 𝑡 , 𝐶 𝑡  are given real functions 𝑐𝑘       𝑘 =
0,1, … , 𝑛 − 1 is constant. Riccati differential equation is a class of nonlinear differential equation of much importance 

and plays a significant role in many fields of engineering and applied science. 

An advantage of the decomposition method is that it can provide analytical approximation to a rather wide 

class of linear nonlinear equations without linearization, perturbation, closure approximations, or discretization 

methods which can result in massive numerical computation[1].  

 

The Adomian decomposition method was introduced and developed by George Adomian in [2–3]. The 

Adomian decomposition method (ADM) is a semi-analytical method for solving both ordinary and partial nonlinear 

differential equations. Also ADM used for solving the fractional order differential equations. The crucial aspect of the 

method is employment of the "Adomian polynomials" which allow for solution convergence of the nonlinear portion of 

the equation, without simply linearizing the system. These polynomials mathematically generalize to a Maclaurin series 

about an arbitrary external parameter; which gives the solution method more flexibility than direct Taylor series 

expansion. 

 

Massive equations have been solved by ADM [4-7]. the application of the ADM in solving nonlinear wave-

like equations with variable coefficients was present in [4].(ADM) for solving nonlinear integro- differential equations 

[5].a new convergence proof of Adomian’s technique based on properties of convergent series[6]. 

 

Also many outhers used ADM to solve fractional order differential equation [8-11]. Adomian decomposition 

method has been employed to obtain solutions of a system of fractional differential equations [8] The Adomian 

decomposition method has been successively used to find the explicit and numerical solutions of the time fractional 

partial differential equations [9]. Introduces a convergence-control parameter into the standard Adomian decomposition 

method and establishes a new iterative formula. Analyze the solution of the n-term linear fractional-order differential 

equation with constant coefficients by Adomian decomposition method in [10]. linear differential equations of 

fractional order has been solved in [11]. 
 

Modification on ADM has been done by Many authors and researcher Wazwaz [12] established a new algorithm for 

calculating Adomian polynomials and introduced the modified ADM to solve meny differential equations. MADM 
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technique for dynamic solutions offers an explicit time- marching algorithm that works accurately over such a bigger 

time step [13]. Based on Newton’s method, Abbasbandy [14] presented the modified ADM and applied it to construct 

the numerical algorithms. 

 

In order to overcome inaccurate terms arising from solving nonlinear differential equations with the higher 

time derivative, Abassy [15] defined new Adomian polynomials and provided a qualitative improvement over the 

standard ADM. The Pade´ approximants are effectively used in the analysis to capture the essential behavior of the 

solution .The combination of the series solution with the Pade´ approximants was successfully implemented in [17–18] 

and proved to be effective and promising. 

 

II. FRACTIONAL ORDER CALCULUS 

The fractional calculus and fractional differential equations have recently become increasingly important topics in 

the literature of engineering, science and applied mathematics. Application areas include viscoelasticity, 

electromagnetics, heat conduction, control theory and diffusion [19-23]. 

 

Fractional calculus deals with derivatives and integrals of arbitrary order and conceder a generalization of classical 

calculus. Fractional calculus deals with derivatives and integrals of arbitrary order provides a more powerful tool for 

modeling the real live phenomena, and this is actually a natural result of the fact that in FC the integer orders are just 

special cases.  

Definition:  Let 𝛼 ∈ 𝑅+ . The operator 𝐽𝑎
𝛼  defined on 𝐿1[𝑎,  𝑏] by 

𝐽𝑎
𝛼𝑓 𝑡 =

1

𝛤 𝛼 
  𝑡 − 𝜏 𝛼−1

𝑡

𝑎

𝑓 𝜏 𝑑𝜏 (3) 

for 𝑎 ≤  𝑡 ≤  𝑏, is called the Riemann-Liouville fractional integral operator of order α 

Definition:   Let 𝛼 ∈  𝑅+ and 𝑛 =   𝛼  . The operator Da
α  defined as 

𝐷𝑎
𝛼𝑓 𝑡 = 𝐷𝑛 𝐽𝑎

𝑛−𝛼𝑓 𝑡  (4) 

 

𝐷𝑎
𝛼𝑓 𝑡 =

 
 

 𝐷𝑛
1

𝛤 𝑛 − 𝛼 
  𝑡 − 𝜏 𝑛−𝛼−1𝑓 𝜏 

𝑡

𝑎

𝑑𝜏  𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛

𝑑𝑡𝑛
 𝑓 𝑡                                                                     𝛼 = 𝑛

      (5) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏, is called the Riemann-Liouville differential operator of order α.  

the Riemann-Liouville differential operator is the left-inverse operator of  the Riemann-Liouville fractional integral 

operator  

i.e             𝐷𝑎
𝛼 𝐽𝑎

𝛼 = 𝐼 

 

by convention    𝐷𝑎
0𝑓 𝑡 = 𝑓 𝑡          𝑖. 𝑒       𝐷𝑎

0 = 𝐼 

 

Definition: Let 𝛼 ∈  𝑅+ and 𝑛 =   𝛼  . The operator 𝐷∗𝑎
𝛼  defined by 

 

𝐷𝑥
𝛼

𝑎
𝑐 𝑓 𝑡 =  𝐷∗𝑎

𝛼 =

 
 

 
1

𝛤 𝑛 − 𝛼 
  𝑡 − 𝜏 𝑛−𝛼−1𝑓(𝑛)(𝜏)

𝑡

𝑎

𝑑𝜏       𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛

𝑑𝑡𝑛
 𝑓 𝑡                                                                     𝛼 = 𝑛

  (6) 

for 𝑎 ≤ 𝑡 ≤ 𝑏, is called the Caputo differential operator of order α 

 

The relationship between the caputo derivative and the Riemann-Liouville derivativae is the following. 

 

Theorem 1 let 𝛼 > 0, assume that 𝑓 is such that both 𝐷𝑡
𝛼

𝑎
𝑅  𝑓 and 𝐷𝑡

𝛼
𝑎
𝐶  𝑓 exist 

 

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅  𝑓 𝑡 −  

𝑓(𝑘) 𝑎 

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

 𝑡 − 𝑎 𝑘−𝑎  

 

(7) 
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Proof: note that, Diethelm[23], 

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅  𝑓 𝑡 −  

𝑓(𝑘) 𝑎 

k!
𝐷𝑡

𝛼
𝑎
𝑅

𝑛−1

𝑘=0

  . −𝑎 𝑘  𝑡  

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅  𝑓 𝑡 −  

𝑓(𝑘) 𝑎 

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

 𝑡 − 𝑎 𝑘−𝑎  

Theorem 2      let 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛, then, 

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅  𝑓 𝑡 −  

𝑓(𝑘) 𝑎 

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

 𝑡 − 𝑎 𝑘−𝑎  

= 𝐷𝑡
𝛼

𝑎
𝑅   𝑓 𝑡 − 𝑇𝑛−1 𝑓; 𝑎  𝑡   

Here 

 𝑇𝑛−1 𝑓; 𝑎  𝑡 =  
𝑓(𝑘) 𝑎 

k!

𝑛−1
𝑘=0  𝑡 − 𝑎 𝑘  

Denotes the Taylor polynomial of degree 𝑛 − 1 for the function 𝑓, centred at 𝑎; in the case 𝑛 = 0 thus we define 

𝑇𝑛−1 𝑓; 𝑎 = 0 
Proof: from Theorem 1 we have 

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅  𝑓 𝑡 −  

𝑓(𝑘) 𝑎 

Γ(𝑘 + 1 − 𝛼)

𝑛−1

𝑘=0

 𝑡 − 𝑎 𝑘−𝑎  

𝐷𝑡
𝛼

𝑎
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
𝑎
𝑅   𝑓 𝑡 − 𝑇𝑛−1 𝑓; 𝑎  𝑡   

Note that if 𝑎 = 0, then 

𝐷𝑡
𝛼

0
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
0
𝑅   𝑓 𝑡 − 𝑇𝑛−1 𝑓; 𝑎  𝑡   

where 

𝑇𝑛−1 𝑓; 𝑎  𝑡 =  
𝑓(𝑘) 0 

k!

𝑛−1

𝑘=0

 𝑡 𝑘 , 𝑛 − 1 < 𝛼 < 𝑛. 

When, 0 < 𝛼 < 1, 𝑛 = 1, we have 

𝐷𝑡
𝛼

0
𝐶  𝑓 𝑡 = 𝐷𝑡

𝛼
0
𝑅   𝑓 𝑡 − 𝑓 0   (8) 

  

III. ANALYSIS OF THE ADOMIAN DECOMPOSITION  METHOD 

The method involves splitting an equation into linear and non-linear parts, and then decomposing the solution into 

an infinite series. This series has to be truncated for practical purposes but by adding more terms it is possible to get 

arbitrarily close to the exact solution in a specific domain. 

 

To apply the Adomian decomposition method for solving nonlinear ordinary differential equations, we consider the 

equation 

𝐿𝑦 + 𝑅(𝑦) + 𝐹(𝑦)  =  𝑔(𝑡), (9) 

where the differential operator L may be considered as the highest order derivative in the equation, R is the remainder 

of the differential operator, F(y) expresses the nonlinear terms, and g(t) is an inhomogeneous term. 

 

 If L is a first order operator defined by 

 

𝐿 = 𝑑/ 𝑑𝑡 
 

So the inverse operator 𝐿−1is given by 

𝐿−1(. ) =   .  𝑑𝑡
𝑥

0

 (10) 

So that 

𝐿−1𝐿𝑦 =  
𝑑𝑦

𝑑𝑡
𝑑𝑡

𝑡

0

=  𝑦 𝑡  0
𝑡 = 𝑦 𝑡 − 𝑦(0) (11) 

 if L is a second order differential operator given by 

𝐿 =
𝑑2

𝑑𝑡2
 

so that the inverse operator 𝐿−1 is regarded a two-fold integration operator defined 

by 
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𝐿−1(. ) =    .  𝑑𝑡𝑑𝑡
𝑡

0

𝑡

0

 (12) 

𝐿−1𝐿𝑦 = 𝑦 𝑡 − 𝑦 0 − 𝑡𝑦 ′ 0 . 
In a parallel manner, if L is a third order differential operator, we can easily show 

That 

𝐿−1𝐿𝑦 = 𝑦 𝑡 − 𝑦 0 − 𝑡𝑦′ 0 −
1

2!
𝑡𝑦′′(0) (13) 

For higher order operators we can easily define the related inverse operators in a similar way. 

 

Applying 𝐿−1 to both sides of  
𝐿𝑦 + 𝑅(𝑦) + 𝐹(𝑦)  =  𝑔(𝑡) 

 gives 

𝑦 𝑡 = 𝜓0 + 𝐿−1𝑔 𝑡 − 𝐿−1𝑅𝑦 − 𝐿−1𝐹(𝑦). (14) 

Where 

𝜓0 =

 
 
 
 
 
 

 
 
 
 
 𝑦 0 , 𝑓𝑜𝑟 𝐿 =

𝑑

𝑑𝑡

𝑦 0 + 𝑡𝑦′(0), 𝑓𝑜𝑟 𝐿 =
𝑑2

𝑑𝑡2

𝑦 0 + 𝑡𝑦′ 0 +
1

2!
𝑡2𝑦′′  0 , 𝑓𝑜𝑟 𝐿 =

3

𝑑𝑡3

𝑦 0 + 𝑡𝑦′ 0 +
1

2!
𝑡2𝑦′′  0 +

1

3!
𝑡3𝑦′′′  0 , 𝑓𝑜𝑟 𝐿 =

𝑑4

𝑑𝑡4

𝑦 0 + 𝑡𝑦 ′ 0 +
1

2!
𝑡2𝑦′′  0 +

1

3!
𝑡3𝑦′′′  0 +

1

4!
𝑡4𝑦(4)(0), 𝑓𝑜𝑟 𝐿 =

𝑑5

𝑑𝑡5

  

 

(15) 

 

and so on. The Adomian decomposition method admits the decomposition of 𝑦 into an infinite series of components 

𝑦 𝑡 =  𝑦𝑛

∞

𝑛=0

 (16) 

and the nonlinear term F(y) be equated to an infinite series of polynomials 

𝐹 𝑦 =  𝐴𝑛

∞

𝑛=0

 (17) 

where 𝐴𝑛are the Adomian polynomials. Substituting (16) and (17) into (14) 

gives 

 𝑦𝑛

∞

𝑛=0

= 𝜓0 − 𝐿−1𝑔 𝑡 − 𝐿−1𝑅( 𝑦𝑛

∞

𝑛=0

) − 𝐿−1( 𝐴𝑛

∞

𝑛=0

) (18) 

The various components 𝑦𝑛of the solution y can be easily determined by using the 

recursive relation 

𝑦0 = 𝜓0 − 𝐿−1 𝑔 𝑡  , 

𝑦𝑘+1 = −𝐿−1 𝑅𝑦𝑘 − 𝐿−1 𝐴𝑘 , 𝑘 ≥ 0 

 

(19) 

Consequently, the first few components can be written as 

𝑦0 = 𝜓0 − 𝐿−1𝑔 𝑡 , 
𝑦1 = −𝐿−1 𝑅 𝑦0 − 𝐿−1 𝐴0 , 
𝑦2 = −𝐿−1 𝑅 𝑦1 − 𝐿−1 𝐴1 , 
𝑦3 = −𝐿−1 𝑅 𝑦2 − 𝐿−1 𝐴2 , 
𝑦4 = −𝐿−1 𝑅 𝑦3 − 𝐿−1 𝐴3 , 

Having determined the components yn, n _ 0, the solution y in a series form follows immediately. As stated 

before, the series may be summed to provide the solution in 

a closed form. However, for concrete problems, the n−term partial sum 

∅𝑛 =  𝑦𝑘

𝑛−1

𝑘=0

 

may be used to give the approximate solution. 

In the following, several examples will be discussed for illustration. 
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Apply the decomposition method requires that the fractional differential equation takes form: 

 

𝐷∗
𝛼  𝑦 𝑡 = 𝐴 𝑡 + 𝐵 𝑡 𝑦 + 𝐶 𝑡 𝑦2                   

where the fractional differential operator 𝐷∗
𝛼   is defined as: 

 

𝐷∗
𝛼 =

𝑑𝛼

𝑑𝑡𝛼
 

Applying the operator   𝐽𝛼   the inverse of the operator 𝐷∗
𝛼   to both sides of Eq. (1) and using the initial conditions lead 

to 

𝑦 𝑡 =  𝐶𝑗

𝑡𝑗

𝑗!

𝑚−1

𝑗 =0

+ 𝐽𝛼  𝐴 𝑡 + 𝐵 𝑡 𝑦 + 𝐶 𝑡 𝑦2   (20) 

 

The Adomain’s decomposition method suggests the solution y(t) be decomposed by the infinite series of components 

 

𝑦 𝑡 =  𝑦𝑛 (𝑡)

∞

𝑛=0

 (21) 

and the nonlinear function in Eq. ( 20 ) is decomposed as follows: 

𝑁 𝑦 = 𝑦2 =  𝐴𝑛

∞

𝑛=0

 (22) 

 

where 𝐴𝑛are the so-called the Adomian polynomials. 

Substitution the decomposition series (21) and (22) into both sides of (20) gives 

 𝑦𝑛(𝑡)

∞

𝑛=0

=  𝐶𝑗

𝑡𝑗

𝑗!

𝑚−1

𝑗=0

+ 𝐽𝛼  𝐴 𝑡 + 𝐵 𝑡  𝑦𝑛(𝑡)

∞

𝑛=0

+ 𝐶 𝑡  𝐴𝑛(𝑡)

∞

𝑛=0

   (23) 

 

From this equation, the iterates are determined by the following recursive way: 

𝑦0 =  𝑐𝑗
𝑡𝑗

𝑗!

𝑚−1

𝑗 =0

+ 𝐽𝛼 𝐴(𝑡)  

𝑦𝑛+1 = 𝐽𝛼 𝐵 𝑡 𝑦𝑛 + 𝐶(𝑡)𝐴𝑛(𝑡)               𝑛 ≥ 0 

(24) 

 

The values of the natural number 𝑚 can be 1 and 2 corresponding to 0 <  𝑎 <  1 and 1 <  𝑎 <  2, respectively. 

The K-term approximate solution is then defined as 

∅𝐾 =  𝑦𝑚 (𝑡)

𝐾−1

𝑚=0

, (25) 

 

and the exact solution is 

𝑦 𝑡 = lim
𝐾→∞

∅𝐾(𝑡) (26) 

 

However, in many cases the exact solution in a closed form may be obtained. Moreover, the decomposition series 

solutions are generally converge very rapidly. The convergence of the decomposition series has investigated by several 

authors. 

 

IV. COMBINATION BETWEEN ADM AND RESTRICTIVE PADÉ 
 

Henri Eugène Padé (December 17, 1863 – July 9, 1953) was a French mathematician, who is now 

remembered mainly for his development of approximation techniques for functions using rational functions. The Padé 

approximants are a particular type of rational fraction approximation to the value of the function [24-32].  

The Padé approximant often given as:  
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𝐻 𝑠 =  
𝐴 𝑠 

𝐵 𝑠  
 

(27) 

The Padé approximation can be written in the form 

𝑃𝐴[𝑀 𝑁 ]𝑓(𝑥)  𝑥 =
 𝑎𝑖𝑥

𝑖𝑀
𝑖=0

1+ 𝑏𝑖𝑥
𝑖𝑁

𝑖=1

     where 𝑀 and 𝑁 are positive integers 

 
(28) 

There are 𝑀 + 1 independent numerator coefficients and 𝑁 denominator coefficients making 𝑀 +  𝑁 +  1 unknown 

coefficients. The idea is to match the Taylor series expansion as far as possible  

The 𝑀 +  𝑁 +  1 unknown suggests that normally the   𝑃𝐴 [𝑀/𝑁] ought to fit the power series 𝑓(𝑥)  =   𝑐𝑖𝑥
𝑖∞

𝑖=0 . 

Ismail et al. [24-30] applied Restrictive Padé approximation to solve many differential equations. Function 

approximation that meet Taylor approximation was done by Ismail et al.  in [31] . In paper [32] Ismail et al. introduce 

VIM- Restrictive Padé approximation. 

The restrictive Padé approximation is a rational function in the form: 

𝑅𝑃𝐴[𝑀 + 𝛼 𝑁] 
𝑓 𝑥 

 𝑥 =
 𝑎𝑖𝑥

𝑖𝑀
𝑖=0 +  𝜀𝑖𝑥

𝑀+𝑖𝛼
𝑖=1

1 +  𝑏𝑖𝑥
𝑖𝑁

𝑖=1

 (29) 

where the positive integer 𝛼 does not exceed the degree of the numerator, 𝛼 = 0 1 𝑛  Such that 

𝑓 𝑥 = 𝑅𝑃𝐴[𝑀 + 𝛼 𝑁] 
𝑓 𝑥 

 𝑥 + 𝑂(𝑋𝑀+𝑁+1) (30) 

There are two main steps first we find the traction series given by ADM finally convert this series to Restrictive Padé 

approximation 

V. NUMERICAL EXAMPLE 

Consider the following fractional riccati equation: 
𝑑𝛼𝑦

𝑑𝑡𝛼
= −𝑦2 𝑡 + 1,       0 < 𝛼 ≤ 1 (31) 

Subject to the initial condition 

𝑦 0 = 0 

The exact solution, when 𝛼 = 1, is 

𝑦 𝑡 =
𝑒2𝑡 − 1

𝑒2𝑡 + 1
 (32) 

The Adomain solution 

𝑦0 = 𝑦 0 + 𝐽𝛼 1 =
1

Γ 𝛼 + 1 
𝑡𝛼  

𝑦𝑛+1 = −𝐽𝛼 𝐴𝑛               𝑛 ≥ 0 
 

where 𝐴𝑛are Adomian polynomials for the nonlinear term 𝐹(𝑦)  =  𝑦2 . 

Using the above recursive relationship and Mathematica, the first few terms of the decomposition series are given by 

𝑦0 =
1

Γ 𝛼 + 1 
𝑡𝛼  

𝑦1 = −𝐽𝛼 𝑦0
2 = −

Γ 1 + 2𝛼 

𝛼2Γ 1 + 3𝛼 
𝑡3𝛼  

𝑦2 = −𝐽𝛼 2𝑦0𝑦1 =
16Γ 2𝛼 Γ 4𝛼 

𝛼Γ 1 + 3𝛼 Γ 1 + 5𝛼 
𝑡5𝛼  

𝑦3 = −𝐽𝛼 2𝑦0𝑦2 + 𝑦1
2 = −

 32𝛼2Γ 2𝛼 Γ 4𝛼 Γ 1 + 3𝛼 + Γ 1 + 2𝛼 2Γ 1 + 5𝛼 Γ 1 + 5𝛼  

𝛼4Γ 1 + 3𝛼 2Γ 1 + 5𝛼 Γ 1 + 7𝛼 
𝑡7𝛼  

 

𝑦 𝑡 = 𝑦0 + 𝑦1 + 𝑦2 + ⋯ 
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First order case: setting 𝛼 = 1 

𝑦2 𝑡 = 𝑡 − 0.333333 𝑡3 + 0.133333 𝑡5 (33) 

𝑃𝐴 2/2 =
0.  + 1. 𝑡

1.  + 0.333333𝑡2
 (34) 

Taking the series solution on the form: 

𝑓(t) = 𝑡 − 0.333333𝑡3 + 0.133333𝑡5 

the coffic. that equal Taylor series is: 

𝑐0 = 0 
𝑐1 = 1 
𝑐2 = 0 

𝑐3 = −0.333333 

 𝑎0 = 𝑐0 

𝑎1 = 𝑐1 +
𝑐0𝑐1𝑐2 + 𝑐0𝑐0𝑐2 − 𝑐0𝑐1𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

𝑎2 = 𝜀1 

 𝑏1 =
𝑐1𝑐2 − 𝑐0𝑐3 − 𝑐1𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

 𝑏2 =
𝑐1𝑐3 − 𝑐2𝑐2 − 𝑐2𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

 

(35) 

The system of linear equations (35) has only one unknown that called the restrictive term which forced the require 

series to fit the approximated fractional function (RPA), this unknown valid by finish the equation: 

𝑓 𝑡 − 𝑅𝑃𝐴[𝑚 + 𝛼 𝑛] 
𝑓 𝑡 

 𝑡 = 0 (36) 

For t=0.7 

𝑓[0.7] − (
a0 + a1 0.7 − +𝜖(0.7)2

1 + b1(0.7) + b2(0.7)2
) = 0 

𝜖 = 0.11492495673085872 

 

𝑅𝑃𝐴  
1 + 1 

2
 =

1. 𝑥 + 0.11492495673085872𝑥2

1.0 + 0.11492495673085872𝑥 + 0.333333𝑥2
 (37) 

  

 
Fig. 1 Comparison between ADM, Padé -ADM and Restrictive Padé -ADM for 𝑦2 𝑡  𝑎𝑡 𝛼 = 1 

 

Fractional  order case : in this case we will examine the fractional ricatti equation setting 𝛼 =
1

2
  gives 

𝑦 𝑡 = 2 𝑡 − 3.00901  𝑡
3

2 + 7.24332 𝑡
5

2 
(38) 

For integer power to approximate Padé and restrictive Padé Let  𝑡
1

2 = 𝑥, then 

𝑦 𝑥 = 2𝑥 − 3.00901  𝑥3 + 7.24332 𝑥5      (39) 
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𝑃𝐴[
2

2
]𝑓(𝑥) =

2. 𝑥

1.  + 1.504505𝑥2
 

Reverse to get 𝑃𝐴[2/2]𝑓(𝑡) by 𝑥 =  𝑡
1

2 

𝑃𝐴[2/2]𝑓(𝑡) =
2.  𝑡

1.  + 1.504505 t
 

(40) 

To find restrictive pade approximation from equation  (39). 

𝑐0 = 0, 𝑐1 = 2, 𝑐2 = 0 ,   𝑐3 = −3.00901 
 𝑎0 = 𝑐0 

𝑎1 = 𝑐1 +
𝑐0𝑐1𝑐2 + 𝑐0𝑐0𝑐2 − 𝑐0𝑐1𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

𝑎2 = 𝜀1 

 𝑏1 =
𝑐1𝑐2 − 𝑐0𝑐3 − 𝑐1𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

 𝑏2 =
𝑐1𝑐3 − 𝑐2𝑐2 − 𝑐2𝜀1

𝑐0𝑐2 − 𝑐1𝑐1

 

 

(41) 

The system of linear equations (41) has only one unknown that called the restrictive term which forced the require 

series to fit the approximated fractional function (RPA), this unknown valid by finish the equation: 

 

𝑓 𝑡 − 𝑅𝑃𝐴[𝑚 + 𝛼 𝑛] 
𝑓 𝑡 

 𝑡 = 0 

For t=0.5 

𝑓[0.5] − (
a0 + a1(0.5) + 𝜖(0.5)2

1 + b1(0.5) + b2(0.5)2
) = 0 

 

𝜖 = 4.54076365746382 

 

𝑅𝑃𝐴[2/2]𝑓(𝑥) =
2. 𝑥 + 4.54076365746382𝑥2

1.0 + 2.27038182873191𝑥 + 1.504505𝑥2
 

 

Reverse to get 𝑅𝑃𝐴[2/2]𝑓(𝑡) by 𝑥 =  𝑡
1

2  

 

𝑅𝑃𝐴[2/2]𝑓(𝑡) =
2. 𝑡

1

2 + 4.54076365746382𝑡

1.0 + 2.27038182873191𝑡
1

2 + 1.504505𝑡
 

 

(42) 

 
Fig.2 Error between solution ,ADM, Padé -ADM and Restrictive Padé -ADM for 𝑦2 𝑡  𝑎𝑡 𝛼 = 1 
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Fig. 3 Comparison between ADM, Padé -ADM and Restrictive Padé -ADM for 𝑦2 𝑡  𝑎𝑡 𝛼 = 0.5 

 

VI. RESULTS  AND CONCLUSION 
In this paper, the Modification on ADM is employed to solve Fractional Riccati Differential Equation. The 

solution of differential equation for both fractional and classical has been solved using ADM and show acceptable 

result, effective and very simple. Here we used ADM to have the series solution then converte this solution to classical 

pade approximation which better than the smi-anlaytical solution finally we apply the restrictive Padé approximation on 

the series obtained by ADM and called this solution Adomian decomposition method- restrictive Padé (ADM-RP)  ,this 

solution give more accurate, less calculation and less error. 
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